概述
GROUP BY子句将别名代表的数据行按指定的属性进行分组,分组后各组保留仅一行数据,其余行舍弃。GRIUP BY子句常与聚合、排序等操作配合使用。
语法
GROUP BY <expression> as <alias>, <expression> as <alias>, ...
<expression>
是分组依据;如果使用了多个别名,它们必须同源,此时按照从左到右的顺序逐级进行分组<alias>
是为分组依据定义的别名,可省略
例如,对以下路径查询产生的数据流进行多重分组。先按照起点n1的形状分组,再按照终点n2的颜色分组,然后统计各组的路径数量:

n(as n1).re().n(as n2) as path
group by n1.shape, n2.color
return path, count(path)
示例
示例图集

在一个空图集中,依次运行以下各行语句创建示例图集:
create().node_schema("country").node_schema("movie").node_schema("director").edge_schema("filmedIn").edge_schema("direct")
create().node_property(@*, "name")
insert().into(@country).nodes([{_id:"C001", _uuid:1, name:"France"}, {_id:"C002", _uuid:2, name:"USA"}])
insert().into(@movie).nodes([{_id:"M001", _uuid:3, name:"Léon"}, {_id:"M002", _uuid:4, name:"The Terminator"}, {_id:"M003", _uuid:5, name:"Avatar"}])
insert().into(@director).nodes([{_id:"D001", _uuid:6, name:"Luc Besson"}, {_id:"D002", _uuid:7, name:"James Cameron"}])
insert().into(@filmedIn).edges([{_uuid:1, _from_uuid:3, _to_uuid:1}, {_uuid:2, _from_uuid:4, _to_uuid:1}, {_uuid:3, _from_uuid:3, _to_uuid:2}, {_uuid:4, _from_uuid:4, _to_uuid:2}, {_uuid:5, _from_uuid:5, _to_uuid:2}])
insert().into(@direct).edges([{_uuid:6, _from_uuid:6, _to_uuid:3}, {_uuid:7, _from_uuid:7, _to_uuid:4}, {_uuid:8, _from_uuid:7, _to_uuid:5}])
组内聚合
本例查找“国家-[]-电影-[]-导演”2步路径,按导演进行分组后,统计每组的路径条数:
n({@country}).e().n({@movie}).e().n({@director} as n)
group by n
return table(n.name, count(n))
| n.name | count(n) |
|---------------|----------|
| Luc Besson | 2 |
| James Cameron | 3 |
如果要进行组内聚合运算,执行聚合运算的子句必须紧挨在GROUP BY子句后。
多重分组
本例查找“国家-[]-电影-[]-导演”2步路径,按国家和导演进行分组后,统计每组的路径条数:
n({@country} as a).e().n({@movie}).e().n({@director} as b)
group by a, b
return table(a.name, b.name, count(a))
| a.name | b.name | count(a) |
|--------|---------------|----------|
| France | Luc Besson | 1 |
| France | James Cameron | 1 |
| USA | Luc Besson | 1 |
| USA | James Cameron | 2 |