修改密码

请输入密码
请输入密码 请输入8-64长度密码 和 email 地址不相同 至少包括数字、大写字母、小写字母、半角符号中的 3 个
请输入密码
提交

修改昵称

当前昵称:
提交

申请证书

证书详情

Please complete this required field.

  • Ultipa Graph V4

Standalone

Please complete this required field.

Please complete this required field.

服务器的MAC地址

Please complete this required field.

Please complete this required field.

取消
申请
ID
产品
状态
核数
申请天数
审批时间
过期时间
MAC地址
申请理由
审核信息
关闭
基础信息
  • 用户昵称:
  • 手机号:
  • 公司名称:
  • 公司邮箱:
  • 地区:
  • 语言:
修改密码
申请证书

当前未申请证书.

申请证书
Certificate Issued at Valid until Serial No. File
Serial No. Valid until File

Not having one? Apply now! >>>

ProductName CreateTime ID Price File
ProductName CreateTime ID Price File

No Invoice

v5.0
搜索
    v5.0

      总邻居

      ✓ 文件回写 ✕ 属性回写 ✓ 直接返回 ✓ 流式返回 ✕ 统计值

      概述

      总邻居(Total Neighbors)算法计算两个节点不重复的邻居总数,作为衡量它们相似性的指标。

      该算法考虑两个节点的整个邻域,相对于只关注共同邻居的算法,给出了更全面的相似性视角。它的计算公式如下:

      其中,N(x)和N(y)分别是与节点x和节点y相连的节点集合。

      总邻居数量较多表示节点间的相似度较大,数量为0则表示两个节点间没有相似性。

      在上图中,TN(D,E) = |N(D) ∪ N(E)| = |{B, C, E, F} ∪ {B, D, F}| = |{B, C, D, E, F}| = 5。

      特殊说明

      • 总邻居算法忽略边的方向,按照无向边进行计算。

      语法

      • 命令:algo(topological_link_prediction)
      • 参数:
      名称
      类型
      规范
      默认
      可选
      描述
      ids / uuids []_id / []_uuid / / 待计算的第一组节点的ID/UUID;算法将ids/uuids中的每个节点与ids2/uuids2中的每个节点配对进行计算
      ids2 / uuids2 []_id / []_uuid / / 待计算的第二组节点的ID/UUID;算法将ids/uuids中的每个节点与ids2/uuids2中的每个节点配对进行计算
      type string Total_Neighbors Adamic_Adar 相似度衡量指标;计算总邻居时,保持此项为Total_Neighbors
      limit int ≥-1 -1 返回的结果条数,-1返回所有结果

      示例

      示例图如下:

      文件回写

      配置项 回写内容
      filename node1,node2,num
      algo(topological_link_prediction).params({
        uuids: [3],
        uuids2: [1,5,7],
        type: 'Total_Neighbors'
      }).write({
        file:{ 
          filename: 'tn'
        }
      })
      

      结果:文件tn

      C,A,3.000000
      C,E,3.000000
      C,G,3.000000
      

      直接返回

      别名序号
      类型
      描述 列名
      0 []perNodePair 点对及相似度 node1, node2, num
      algo(topological_link_prediction).params({
        ids: 'C',
        ids2: ['A','C','E','G'],
        type: 'Total_Neighbors'
      }) as tn 
      return tn 
      

      结果:tn

      node1 node2 num
      3 1 3
      3 5 3
      3 7 3

      流式返回

      别名序号
      类型
      描述 列名
      0 []perNodePair 点对及相似度 node1, node2, num
      find().nodes() as n
      with collect(n._id) as nID
      algo(topological_link_prediction).params({
        ids: 'C',
        ids2: nID,
        type: 'Total_Neighbors'
      }).stream() as tn
      where tn.num >= 4
      return tn
      

      结果:tn

      node1 node2 num
      3 2 6
      3 4 5
      3 6 5
      请完成以下信息后可下载此书
      *
      公司名称不能为空
      *
      公司邮箱必须填写
      *
      你的名字必须填写
      *
      你的电话必须填写
      *
      你的电话必须填写